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Introduction

The standard model of particle physics provides a comprehensive
framework that incorporates the fundamental particles that comprise
the universe and the interactions between them. It also provides
some of the most precise (and experimentally verified) predictions
in the whole corpus of science, like the measurement of the fine
structure constant. However, it is not the final word on the matter by
any means.

It still has a large number of free parameters, more than can be
comfortably reconciled with the label of a ‘fundamental theory’.
There is also the so-called hierarchy problem that troubles many the-
oretical particle physicists. The essence of the hierarchy problem is
this: every time we have increased the energy with which we col-
lide particles, we have discovered new, more massive, and more
fundamental particles. The first example of discovery of previously
unknown substructure of a fundamental particle was Rutherford’s
gold-foil scattering experiment. The experiment showed that atoms
are not, in fact indivisible as previously thought, but are mostly
empty space with a hard nucleus at the center. And more recently
of course, we have seen that the nucleus is made of protons and neu-
trons, which are in turn made up of quarks held together by gluon-
mediated forces. We have also seen the discovery of heavier funda-
mental particles like the top quark (which has a rest mass larger than
that of the proton) as we raised the energy threshhold. Based on this
trend, it is natural to expect that we will see at least some new physics
at higher energies1. 1 Indeed, it is widely accepted that

the standard model is simply a low-
energy approximation to some more
fundamental underlying theory.

The Higgs boson, discovered recently at the Large Hadron Collider
has a experimentally measured mass of 126 GeV/c2. In the stan-
dard model, this mass is a free parameter. However, in almost any
extension of the standard model that introduces new, heavier (and
therefore as-yet undiscovered) particles, the Higgs mass suffers from
extremely large quantum corrections (approximately 30 orders of
magnitude larger!) due to couplings to these particles. So the ques-
tion is, why is the mass of the Higgs boson the value it is and not
much higher? Supersymmetry offers an attractive solution to this
problem. It turns out that a quantum correction from a fermion can
cancel out the quantum correction from a boson and vice versa. Su-
persymmetry predicts that there is a symmetry between bosonic and
fermionic states, and there is a transformation that takes one state



supersymmetry in 0 dimensions 2

to the other. The result is a host of new particles, so called superpart-
ners to the familiar standard model particles, that provide the precise
cancellations required to keep the Higgs mass from diverging. The
elegant structure of supersymmetry has attracted a lot of attention
from both mathematicians and physicists. At the Large Hadron Col-
lider, physicists are looking for evidence for or against it. The search
is still ongoing. Although supersymmetry is mainly interesting in
the context of high-energy physics, we can also look at its mathemat-
ical structure in 0-space dimensions, a viewpoint introduced by Ed
Witten in 1982 [5] and use it to obtain a well-known result in intro-
ductory quantum mechanics, the spectrum of a quantum harmonic
oscillator.

Supersymmetric operators in 0-dimensions

Let us consider a Hilbert space2 H, self-adjoint operators3 H and Q,

2 A Hilbert space H is a complete
normed complex vector space in which
the norm comes from an inner product.

The norm is a real-valued function
on H, sending f ∈ H to

∥∥ f
∥∥, which

satisfies

•
∥∥c f
∥∥ = |c|

∥∥ f
∥∥ for c ∈ C.

•
∥∥ f + g

∥∥ ≤∥∥ f
∥∥+∥∥g

∥∥
•
∥∥ f
∥∥ ≥ 0 and

∥∥ f
∥∥ = 0 iff f = 0.

H is complete if every Cauchy se-
quence in it has a limit that is also in it.
That is, if

∥∥ fn − fm
∥∥ → 0 as n, m → ∞,

then there exists a unique f ∈ H such
that

∥∥ fn − f
∥∥→ 0 as n→ ∞.

The inner product on H is a map
from pairs f , g ∈ H to ( f , g) ∈ C such
that

• ( f , g) is linear in f & anti-linear in g.

• ( f , g) = (g, f )

• ( f , f ) ≥ 0 and ( f , f ) = 0 iff f = 0

(Physicists might be more familiar
with the Dirac notation for the inner
product, 〈 f |g〉)

3 An operator T is self-adjoint if it is
equal to its adjoint, T∗, defined by the
inner product relation

(T∗g, f ) = (g, T f ).

and a bounded4 self-adjoint operator P in H, such that the following

4 A linear operator T is said to be
bounded if there is a constant M such
that

∥∥T f
∥∥ ≤ M

∥∥ f
∥∥ for all f ∈ H.

conditions are satisfied:

H = Q2 > 0 (1)

P2 = 1 (2)

{Q, P} := QP + PQ = 0. (3)

We then say that the system {H, P, Q} has supersymmetry. This is
just a definition. Now, since P is self-adjoint, it has real eigenvalues
(See Dimock, p. 16). Consider ψ ∈ H, an eigenvector of P with
eigenvalue λ. Now, Pψ = λψ, so P2ψ = λ2ψ. But from (2), we know
that λ2 = 1. And since λ has to be real, it can only take on one of two
values, +1 and -1. Let us denote the two collections of eigenvectors
of P in H that correspond to these two eigenvalues as H f and Hb. In
set-builder notation,

H f := {ψ ∈ H|Pψ = −ψ} (4)

Hb := {ψ ∈ H|Pψ = ψ} (5)

The reader with a physics background might correctly guess that
the f and b denote fermionic and bosonic subspaces respectively. We
can then uniquely decompose H into the direct sum5 of the vector

5H is the direct sum of H f and Hb if

• H f and Hb have no common mem-
bers.

• Every element of H can be written
as a sum of a member of Hb and a
member of Hb.

We know that there are no common
members because the members of H f
and Hb have distinct eigenvalues - it
would be impossible for a member to
have both -1 and +1 as eigenvalues
simultaneously. The second condition
is satisfied as well, because by the
spectral theorem, since P is a bounded
self-adjoint operator on H, all the
vectors in H are linear combinations of
eigenvectors of P.

spaces H f and Hb, that is, we can write

H = H f ⊕Hb

Thus we can write
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P =

(
1b 0
0 −1 f

)
where 1b and 1 f are the unit operators acting on Hb and H f respec-
tively. Basically, we can think of vectors in the Hilbert space H as
having fermionic and bosonic components. The operator P will act
differently on the different components. Bosonic states are invariant
under P (which is to be interpreted as a parity inversion operation,
inverting the signs of the coordinates in the wave function), while
fermionic states pick up a negative sign. The dimensions of the sub-
spaces will depend upon the physical system in question, that is, the
number of particles, the number of degrees of freedom, &c.

We can find the form of the operator Q (the matrix representation)
by considering the following. P and Q anti-commute. Let Q take the
form

Q =

(
a b
c d

)
We will determine the elements a, b, c, d. Since P & Q anti-commute,
we have

{P, Q} = PQ + QP =

(
1b 0
0 −1 f

)(
a b
c d

)
+

(
a b
c d

)(
1b 0
0 −1 f

)

=

(
a b
−c −d

)
+

(
a −b
c −d

)
=

(
2a 0
0 −2d

)
=

(
0 0
0 0

)
⇒ a = d = 0

And since we know that Q is self-adjoint, we have Q∗ = Q, i.e.

(
0 b
c 0

)∗
=

(
0 c∗

b∗ 0

)
=

(
0 b
c 0

)
(6)

which implies b and c are adjoints of each other. Thus we can write Q
in the form

Q =

(
0 A∗

A 0

)
We can think of A∗ and A as the familiar creation and annihilation
operators. We will see this more explicitly when we come to the
harmonic oscillator spectrum later. But first we will prove a theorem
that will help us later on.
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Theorem: If the system {H, P, Q} has supersymmetry, then for any
bounded open set Ω ⊆ (0, ∞) we have6 6 For an operator A defined on a vector

space W, A � V is the restriction of A to
V, a subset of W.

dim(EΩ(H) � Hb) = dim(EΩ(H) � Hb)

where EΩ(H) is the spectral projector7 of H on Ω. 7 Spectral projector: This operator acts
on members f ∈ H and returns 1 if f is
an eigenvector of the operator H with
an eigenvalue that lies in the set Ω, and
0 otherwise.

Proof: Basically, the quantity dim(EΩ(H) � Hb) is the number of
bosonic states that have eigenvalues that lie in the set Ω. This the-
orem says that there are an equal number of bosonic and fermionic
eigenstates with eigenvalues that lie in Ω. This is the one-to-one cor-
respondence between bosons and fermions that supersymmetry gives
us.

Let P± be the projectors onto the subspaces Hb and H f respec-
tively. Let us also define E±Ω = EΩ(H)P±. Our immediate goal is now
to show that

QE±Ω = E∓ΩQ, (7)

i.e. QEΩ(H)P± = EΩ(H)P∓Q. (8)

It may not be the most elegant method, but to me the most straight-
forward way to proceed is to use explicit matrix representations of
these operators, assuming they act on a vector ψ ∈ H comprised of
bosonic and fermionic components.

ψ =

(
ψb

ψ f

)
The matrix representations of the operators acting on this vector are:

P+ =

(
1 0
0 0

)
; P− =

(
0 0
0 1

)
and EΩ(H) =

(
EΩ(H)b 0

0 EΩ(H) f

)
Combining these with the representation of Q that we have already
seen, it is fairly easy to see that P± commutes with EΩ(H). So if we
can show that QP± = P∓Q, then we should be able to get (8). Let us
show this explicitly for one of the cases.

QP+ψ =

(
0 A∗

A 0

)(
1 0
0 0

)(
ψb

ψ f

)
=

(
0

Aψb

)

P−Qψ =

(
0 0
0 1

)(
0 A∗

A 0

)(
ψb

ψ f

)
=

(
0

Aψb

)
Similarly, we can show that QP− = P+Q, and so we finally have

QE±Ω = E∓ΩQ.
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Now, since 0 /∈ Ω, Q is invertible, and

dim(E+
Ω) = dim(E−Ω)

But dim(EΩ(H) � Hb) = dim(E+
Ω) and dim(EΩ(H) � H f ) = dim(E−Ω),

so the theorem is proved.

Spectrum of a harmonic oscillator using supersymmetric operators

Let the Hilbert space H = L2(R⊗ C2) and let q(x) be polynomial
function of x. If we define the ’creation’ and ’annihilation’ operators

A∗ = − d
dx

+ q(x)

A =
d

dx
+ q(x)

Then we can find the products A∗A and AA∗ as follows. Let us first
consider the product A∗A, acting on f ∈ H.

A∗A f =

(
− d

dx
+ q(x)

)(
d

dx
+ q(x)

)
f

=

(
− d2

dx2 + q2(x)

)
f + q(x)

d f
dx
− d

dx
(
q(x) f

)
=

(
− d2

dx2 + q2(x)

)
f + q(x)

d f
dx
−
(

dq(x)
dx

)
f − q(x)

d f
dx

=

(
− d2

dx2 + q2(x)− q′(x)

)
f

We can perform a similar operation for AA∗, and obtain

AA∗ = − d2

dx2 + q2(x)− q′(x).

Then we can write the operator Q discussed earlier as

Q =

(
0 − d

dx + q(x)
d

dx + q(x) 0

)
So then the operator H = Q2 becomes

H = Q2 =

 − d2

dx2 + q2(x)− q′(x) 0
0 d2

dx2 + q2(x) + q′(x)


So the system {H, P, Q} is supersymmetric. If we set q(x) = x, then

A∗A = − d2

dx2 + q2(x)− 1
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which is nothing but the harmonic oscillator, shifted by 1. Similarly,

AA∗ = − d2

dx2 + q2(x) + 1,

implying that

AA∗ = A∗A + 2. (9)

The above line implies

dim(E∆(A∗A)) = dim(E∆−2(AA∗)) for ∆ ⊆ (0, ∞) (10)

That is, for every eigenstate of A∗A with eigenvalue in some set ∆,
there will be an eigenstate of AA∗ with eigenvalue in a set negatively
shifted from ∆ by two. For example, if there are 25 eigenstates of
A∗A with eigenvalues in the set (3,5), there will be 25 eigenstates of
AA∗ with eigenvalues in the set (1,3). We know that the spectrum of
H is the union of the spectrum of A∗A and the spectrum of AA∗, i.e.

σ(H) = σ(A∗A) ∪ σ(AA∗).

Since A∗A ≥ 0, and using (9), we can say that AA∗ ≥ 2, so

σ(AA∗) ≥ 2,

i.e. the eigenvalues of AA∗ must be greater than or equal to 2. Now,
from (10), we can say that since there are no eigenstates of AA∗ with
eigenvalues in (0,2), there are no eigenstates of of A∗A with eigenval-
ues in (2,4). We can recursively apply this to say that in general, there
is no spectrum of H in (2n, 2(n + 1)), where n is a natural number.
Therefore, H must have spectrum in the set {2, 4, 6, 8, ...}. Save for
some physical constants and scaling factors, we have recovered the
essential discrete nature of the quantum harmonic oscillator spec-
trum using a novel approach. This is just one of the ways that the
mathematics of supersymmetry can cast new light upon familiar
physics.
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